在线日韩av观看,中文字幕一区二区三区蜜月,国产精品无人区,国产一区视频网站

咨詢電話:13699145010
article技術文章
首頁 > 技術文章 > 電介質材料絕緣擊穿電壓強度特性

電介質材料絕緣擊穿電壓強度特性

更新時間:2023-04-25      點擊次數:2069

2、PI復合電介質材料絕緣擊穿電壓強度特性

2.1PI/無機復合電介質材料

向聚酰亞胺基體中摻雜無機納米顆粒,通過改變納米粒子的結構、含量等進而優化聚合物的導電、導熱性,可獲得介電強度更為優異的復合材料?,F階段常用的納米粒子分散技術有共混法(溶液共混法、熔融共混法與機械共混法等)、溶膠-凝膠法、原位聚合法等均能獲得較好的分散效果,使材料的絕緣特性得到顯著提升。

image.png

國內外學者發現,一維填料具有較高的比表面積,界面效應更顯著,且由于其具有更大的縱橫比,也可起到一定的阻擋效應,對提升聚合物的絕緣強度能起到積極作用。WAN等通過溶液共混法將鈦酸鋇納米纖維引入到聚酰亞胺基體中,并系統研究了復合材料的表面形貌與介電強度間的聯系,從雙電層模型分析得出,由于纖維填料與PI界面之間費米能級的差異,大量電荷黏附于填料表面,如圖5所示,在電荷間的靜電作用下,載流子的運動軌跡發生變化,遷移路徑變長,使得復合薄膜在納米纖維含量較低的情況下仍能保持較好的絕緣擊穿電壓。此外,對納米纖維進行表面改性,增加其與PI基體間的相容性,也是提高PI絕緣擊穿電壓的重要手段。由此,Wang等采用靜電紡絲法獲得了一維核殼結構鈦酸鋇-二氧化鋯(BT@ZrO2)納米纖維,并制備了BT@ZrO2/PI復合材料,其絕緣擊穿電壓較純PI提升了19%,通過有限元仿真得出,表面改性后的BT納米纖維表面處的電場畸變顯著降低,且由于其大縱橫比的形狀可改變載流子遷移路徑,使得復合薄膜絕緣擊穿電壓進一步提升。

 

image.png 

Zhao等人通過水熱法合成了超長碳納米管(TNs),并將其引入聚酰亞胺中獲得了TNs/PI復合薄膜,發現與普通一維填料相比,超長TNs具有更大的縱橫比,可以延長載流子的遷移路徑,并且TNsPI基體形成強大的界面耦合作用,在極低含量下(0.25wt%),TNs能限制聚合物在應力作用下的運動和變形,實現了復合材料的機械強度、介電強度的協同提升。

隨著二維納米填料制備技術的發展和性能的提高,其更大的表面所形成的阻擋效應可有效延長電樹的生長路徑,從而增加絕緣的擊穿時間與擊穿場強。因此,二維填料也逐漸成為聚酰亞胺復合材料中摻雜劑的新選擇。

朱聰聰等人利用原位聚合法,制備不同組分的二氧化鈦納米片(TNSs)/PI復合薄膜,詳細研究了TNSs對聚合物介電強度的影響,發現TNSs表面的羥基與PI分子鏈中氧原子形成的氫鍵極大的增強了兩者的相容性,且由于TNSs的阻擋作用,復合薄膜的擊穿場強較純PI提升了9.4%。此外,六方氮化硼(h-BN)作為一種典型的石墨結構的二維陶瓷材料,其二維共軛層具有優異的本征熱導系數與絕緣強度,也成為了研究者們進行納米改性的熱門選擇對象。Zhao等人發現將氮化硼引入氮化鋁(AlN)/PI的復合體系中,可以提升復合薄膜在電場中的穩定性[49],原因是BN納米片可有效防止高場下C-N-CC-O-C鍵的斷裂,并能通過自氧化反應加速納米粒子的暴露,起到對外電子的散射作用,從而增加復合材薄膜的耐電暈特性,且由于BN納米片可以延長電樹枝的破壞路徑,實現了耐電暈性能與介電強度的雙向提高,如圖6所示。

image.png 

傳統的無機納米顆粒引入到聚合物基體中或許可以提升復合材料的絕緣強度,但單純的物理混合往往導致填料與基體的結合性較差,通常會伴隨著機械性能的下降。因此,為了獲得優異的電擊穿性能的同時,保留復合材料的機械強度。Li等人將有機金屬骨架(ZIF-8)作為填料與聚酰亞胺復合,利用ZIF-8上的不飽和活性基團與PI相結合形成的三維多位點鍵合網絡,可分散和均化施加到復合薄膜的應力作用,大幅度提升了其拉伸強度,同時保持了優異的柔韌性,從分子動力學計算得出,ZIF-8誘導的多位點鍵合網絡在電場作用下能保持更大的帶隙寬度,抑制高電場下的電子激發,起到了降低材料的導電性的效果,如圖7所示。

 

image.png 

此外,核-殼結構的納米填料與基體間的介電性能具有良好的匹配性,在電場作用下不易出現相分離現象?;诖?,Duan等人以核-雙殼結構的F-BA(由氮化硼和聚多巴胺包覆的球形氧化鋁組成)為填料,制備了具有三維導熱網絡和高絕緣擊穿電壓的聚酰亞胺復合材料(如圖8所示),發現隨著F-BA含量增加,聚酰亞胺中生成明顯的三維導熱網絡,復合薄膜的導熱性能顯著提升,且由于官能化的F-BA顆??梢愿纳婆cPI基體間的界面相容性,抑制內部泄漏電流,電氣絕緣強度相較于純PI提升68%,并能保持良好的力學性能。

image.png 

2.2PI全有機復合電介質材料

以不同形狀和結構的無機納米粒子為填料是研究者們提高聚合物介電強度的常用手段,但由于無機填料成本高,合成與分散過程較為復雜,且其與基體間的相容性差,當填料含量較高時,會出現明顯的相分離現象,尤其經過環境老化后,材料的力學性能和絕緣性能通常會出現顯著下降。近年來,為了最大限度地提高電介質元件間的相容性,研究者們提出了全有機復合材料的概念,試圖通過與聚酰亞胺性質相似的聚合物共混或接枝,制備新型的聚酰亞胺復合材料。

聚硫脲(ArPTU)和聚酰亞胺都是具有高玻璃化轉變溫度的無定形極性聚合物,此外,ArPTU本身較高的偶極矩與介電強度也使其成為了目前重點研究的工程材料之一,但由于ArPTU在室溫下具有脆性,限制了其在薄膜電容器領域的應用??紤]到性質相似的聚酰亞胺的高韌性可以與之互補,Ahmad等人采用簡單有效的溶液澆鑄共混法,將ArPTU填充到PI中,制備了ArPTU/PI共混膜,發現兩者間能保持良好的相容性,當ArPTU含量為10wt%時,ArPTU本身的大偶極矩所誘導的深陷阱可有效降低載流子遷移率,使得共混膜的絕緣擊穿電壓較純PI提升74%,并能保持PI本身優異的熱學性能與力學性能。除ArPTU外,聚丙烯腈(PAN)、聚芳醚脲(PEEU)等其它線性極性聚合物由于其本身的高介電強度也受到了研究者們的青睞。為此,Ahmad通過溶液澆鑄法制備了PEEU/PI共混膜,克服了PEEU柔韌性差的缺陷,由于在PI基體中引入了更多的絕緣組分,共混膜中的絕緣擊穿電壓較純PI提升了94%。

傳統的溶液共混法仍會因為共混組分分布不均勻,使得介電損耗增大,并可能導致介電強度大幅度下降。為了克服兩相不均勻混合的困難,Liao等人通過原位縮聚法,獲得了聚丙烯腈(PAN)與聚酰胺酸(PAA)的混合溶液,隨后通過熱亞胺化制備了一種具有共軛梯形結構的復合薄膜(PcLS/PI),發現PAN含量為20wt%時,聚合物具有最為均勻、致密的分子結構,同時絕緣擊穿電壓達到峰值,當PAN含量繼續增大,聚合物中共軛結構占比也逐漸增高,電子云大量重疊使得載流子遷移率增大,擊穿場強逐漸下降??梢娋酆衔飪确肿渔湺逊e密度也對絕緣性能有著一定的影響??紤]到離域電子的正負性會隨著分子鏈結構的變化而變化,Zhang等人利用了這種鏈間的靜電作用,通過適當匹配的聚合物共混,減小了分子鏈間的平均距離,獲得緊密堆砌鏈結構的聚酰亞胺/聚醚酰亞胺(PI/PEI)共混物(如圖9所示),50/50PI/PEI共混膜室溫下的擊穿場強達到1MV/mm,更難得的是在200°C的高溫下仍可保持550kV/mm的優異性能。

 

image.png 

此外,研究者們發現可以通過多層、中間層、梯度結構、三明治結構等方法控制各相聚合物間的排列次序,以達到強絕緣的目的,但其中線性層(L)和非線性層(N)之間介電常數和介電強度的差異,會導致在夾層處出現嚴重的畸變電場,降低復合材料的絕緣擊穿電壓。為了優化LN層結構間的畸變電場,Sun等人分別采用聚醚酰亞胺(PEI)和聚偏氟乙烯-六氟丙烯(P(VDF-HFP))作為L層和N層,并在L層與N層間引入了以PEI/P(VDF-HFP)為共混材料的過渡層(T),獲得了三層不對稱結構的全有機復合薄膜(如圖10所示)。利用T層的均化電場特性,將集中在L層的電壓分攤到T層與N層上,從而削弱了夾層電場畸變,且其特別的LTN結構起到對熱電子的阻擋作用,能進一步提高復合薄膜的絕緣擊穿電壓

 

image.png 


北京中航時代儀器設備有限公司
  • 聯系人:石磊
  • 地址:北京市房山區經濟技術開發區1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關注我們

歡迎您關注我們的微信公眾號了解更多信息

掃一掃
關注我們
版權所有 © 2026 北京中航時代儀器設備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術支持:化工儀器網    
一本色道久久88亚洲综合88| 亚洲精品一区中文字幕乱码| 婷婷综合久久一区二区三区| 久久精品视频在线看| 久久99久久精品| 亚洲精品资源美女情侣酒店| 91精品综合久久久久久| 色综合久久中文字幕综合网 | 欧美性xxxxx| 亚洲猫色日本管| 国产欧美一区二区三区在线看蜜臀 | 国产欧美久久久精品影院| 九九九久久久精品| 久久av中文字幕片| 中文字幕少妇一区二区三区| 日韩精品视频免费专区在线播放| 精品日韩在线观看| 日韩一区和二区| 日韩一区二区三区在线| 欧美丰满一区二区免费视频| 色狠狠综合天天综合综合| 岛国视频午夜一区免费在线观看| 亚洲电影一区二区三区| 亚洲成av人**亚洲成av**| 亚洲一区二区三区中文字幕在线| 国产精品你懂的| 国产精品免费视频一区| 中文字幕一区二区在线观看 | 欧美日韩在线视频一区二区| 精品久久久香蕉免费精品视频| 天天综合日日夜夜精品| 亚洲国产成人高清精品| 午夜私人影院久久久久| 亚洲h在线观看| 一本色道久久综合亚洲91| 色吊一区二区三区| 欧美日韩电影一区| 日韩欧美精品在线| 亚洲第一天堂无码专区| 亚洲欧美成人一区二区在线电影| 国产亚洲激情视频在线| 国产综合成人久久大片91| 国产乱人伦偷精品视频免下载 | 国产亚洲精品福利| 欧美国产日韩一二三区| 一区二区三区小说| 岛国视频午夜一区免费在线观看| 色偷偷88欧美精品久久久| 欧美久久一二区| 精品美女被调教视频大全网站| 亚洲国产精品999| 亚洲日本中文字幕| 国产伦精品一区二区三区在线观看| 国产99久久久精品| 中文字幕不卡三区| 精品动漫一区二区三区| 欧美日韩精品一区二区在线播放| 日韩一二三区视频| 国产亚洲一区精品| 国产成人精品午夜视频免费 | 欧美久久久久中文字幕| 精品蜜桃在线看| 中文字幕av一区中文字幕天堂| 国产精品影视在线| 中文字幕亚洲一区二区va在线| 婷婷一区二区三区| 欧美高清精品3d| 国产亚洲欧洲在线| 91蜜桃婷婷狠狠久久综合9色| 成人欧美一区二区三区| 色综合天天综合给合国产| 日韩欧美综合在线| 中文字幕在线成人| 亚洲视频一区在线| 91久久久免费一区二区| 亚洲国产精品va在线看黑人| 精品一区二区日韩| 亚洲精选一二三| 欧美日韩国产综合久久| 亚洲美女久久久| 国产欧美一区二区精品秋霞影院| 欧美日韩性视频在线| 亚洲国产高清自拍| 91麻豆视频网站| 欧美午夜视频一区二区| 亚洲精品一线二线三线| 国产一区二区三区黄视频| 亚洲成人高清在线| 日韩一级二级三级| 国产一区二区三区在线看麻豆| 一区二区三区日本| 欧美成人免费网站| 成人免费视频一区二区| 欧美性猛xxx| 亚洲美女在线观看| 国产女人水真多18毛片18精品视频 | 亚洲成人免费影院| 精品电影一区二区| 成人免费看的视频| 色综合久久综合网| 中文字幕久久亚洲| 午夜在线成人av| 精品成人在线观看| 国产偷国产偷亚洲高清人白洁| 色婷婷精品久久二区二区蜜臀av | 亚洲成a人v欧美综合天堂下载| 精品久久久久久久人人人人传媒 | 亚洲欧美精品在线| 亚洲女同ⅹxx女同tv| 日韩视频免费观看高清完整版| 国产suv精品一区二区三区| 黑人巨大精品欧美一区免费视频 | 中文字幕一区二区精品| 亚洲一线二线三线视频| 日韩av最新在线观看| 中文字幕五月欧美| 欧美精品一区二区三| 国产精品视频一二| 精品久久久久久久久久久久久久久久久| 久久综合色天天久久综合图片| 日韩欧美精品在线观看| 国产一区欧美一区| 欧美日韩中文另类| aaa国产一区| 91精品黄色片免费大全| 成人精品电影在线观看| 欧美日韩一二三区| 国产亚洲精品aa午夜观看| 欧美一卡二卡三卡| 一区免费观看视频| 欧美变态tickling挠脚心| 亚洲精品国产a| 日韩福利视频在线观看| 亚洲国产成人高清精品| 国产午夜精品美女视频明星a级| 亚洲一级在线观看| 国产亚洲视频在线观看| 一本一道综合狠狠老| 成人爱爱电影网址| 日韩免费看网站| 一区二区三区毛片| 国产一区二区三区在线免费观看 | 亚洲欧美成人在线| 欧美日韩在线第一页| 成人午夜激情在线| 日韩一区二区在线观看视频| 亚洲丝袜精品丝袜在线| 亚洲欧美一区二区精品久久久| 欧美日韩在线视频一区| 成人午夜精品一区二区三区| 欧美刺激午夜性久久久久久久| 亚洲激情图片小说视频| 激情亚洲综合在线| 91精品国产综合久久精品性色| 亚洲免费在线看| 国产亚洲人成a一在线v站| 91官网在线免费观看| 中文字幕亚洲电影| 久久91精品国产91久久小草| 欧美精品一二三区| 一区二区三区在线影院| 国产在线精品不卡| 亚洲成色www8888| 日韩欧美在线一区| 国产三级久久久| 中文字幕欧美国内| 日韩欧美在线网站| 黄色成人av网| 国产日韩亚洲欧美综合| 伊人久久综合97精品| 日韩一区二区免费在线电影 | 欧美日韩美女一区二区| 亚洲免费观看高清完整版在线观看熊 | 日韩精品在线一区| 欧美日韩精品在线播放| 国产精品丝袜久久久久久app| 一本一道久久a久久精品逆3p| 欧美精品国产精品| 亚洲成人激情av| 欧美激情一区在线| 激情欧美一区二区| 日韩成人在线电影网| 在线免费一区三区| 亚洲h动漫在线| 国产精品麻豆欧美日韩ww| 国产乱子伦一区二区三区国色天香| 亚洲精品理论电影| 欧美一区日韩一区| 日本精品视频一区二区三区| 亚洲黄色免费电影| 中文字幕av不卡| 国产99一区视频免费| 久久av资源网| 日韩高清a**址| 欧美草草影院在线视频| 欧美日韩国产a| 日韩欧美中文在线| 午夜不卡av在线| 亚洲精品一二三| 国产精品热久久久久夜色精品三区 |